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In this note we give a proof of the fundamental theorem of algebra, using only the inverse
function theorem and basic point-set topology. The proof is inspired by a proof of Milnor
([1]), which passes from C to the sphere S2, but proceeds somewhat differently (in particular
does not use regular values, or S2).

Theorem 1. Let p(z) be any non-constant polynomial of one complex variable with complex
coefficients. Then p(z) has a complex root.

Proof. Let us identifyR2 with C via x+iy 7→ z, and identify p(z) as a smooth mapR2 → R2

via p(x + iy) = Re(p(x + iy)) + i Im(p(x + iy)). We will need to relate the differential dp
to the classical (formal) derivative p′, computed using the power rule.1 To do this, we also
identify C with a subset of M2(R), the space of 2× 2 real matrices, via the map

Φ(x + iy) =

(
x −y
y x

)
.

It is easy to check that Φ is indeed a ring isomorphism onto its image. We have the following
easy lemma:

Lemma 2. Considered as a map R2 → R2, dpz = Φ(p′(z)), where p′(z) is the (formal)
derivative of p.

From the lemma, we deduce immediately that p has finitely many critical points. Indeed,
dpz is singular if and only if Φ(p′(z)) is not invertible, which happens if and only if p′(z) = 0,
since Φ is a ring isomorphism onto its image. Since p′ is a nonzero polynomial over a field,
it only has finitely many zeroes

To show that p has a root, we prove the stronger claim that p is surjective.
To do so, we need:

Lemma 3. The image p(C) is closed.
1By formal, we mean for instance that the derivative of azk is akzk−1, extended by sum rule to all

polynomials. We say “formal” since we do not wish to use the derivative of a function of one complex
variable. Of course these coincide, but the formal algebraic definition suffices.
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Proof. Suppose xn ∈ C and p(xn)→ y ∈ C. We need to show that y = p(x) for some x. If
the xn were uniformly bounded, then we may pass to a convergent subsequence xnk

→ x, and
then p(xnk

)→ p(x) since p is continuous, and p(xnk
)→ y by assumption. Thus y = p(x).

So suppose the sequence xn were not uniformly bounded. Then we may extract a subse-
quence xnk

with |xnk
| → ∞. Write

p(z) = aNz
N + aN−1z

N−1 + · · ·+ a0,

with aN 6= 0. Then

|p(z)| ≥ |aN ||z|N
(

1− |aN−1|
|aN |

|z|−1 − · · · − |a0|
|aN |
|z|−k

)
=: |aN ||z|N(1− E(z)).

If k is large enough, then |E(xnk
)| ≤ 1/2, and so |p(xnk

)| ≥ 1
2
|aN ||xnk

|N → ∞, a contradic-
tion. Thus the sequence xn is uniformly bounded.

Remark 4. This lemma and the proof is a restatement of the following fact: the map p :
C→ C ⊆ S2 (with S2 identified as the Riemann sphere, i.e. the one point compactification
of S2), is a proper, and thus p extends to a map S2 → S2 mappping ∞ to ∞ and C → C.
Thus p(S2) is compact, and hence closed in S2. Thus

p(C) = p(S2 \ {∞}) = p(S2) \ {∞} = p(S2) ∩C

is the intersection of two closed sets, and hence is closed.
Denote A = p(C). We have shown already that A is closed. Let B = C \ p(C). Then B

is open. Let
G = {y ∈ p(C) = A : dpx is singular whenever y = p(x)}.

Since p has finitely many singular points, G is finite. We now use the inverse function
theorem to show that A \G is open. Indeed, if y ∈ C, then y = p(x) for some x where dpx
is invertible. Thus, by the inverse function theorem, there exist neigbhourhoods U, V ⊆ C,
with x ∈ U and y ∈ V such that p : U → V is a homeomorphism. Shrinking U , we may
assume that dp is non-singular over U . In particular V = p(U) ⊆ C and thus C contains a
neighbourhood of y.

Since C = A∪B = (A\G)∪G∪B is the union of three disjoint sets, C \G = (A\G)∪B
is the union of tow disjoint open sets. Since G is finite, C \ G is connected, and so this is
possible only if A \G or B is empty. As A is infinite but G is finite, A \G is not empty, and
thus B = C \ p(C) is empty. Hence p is surjective.
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