Fundamental Theorem of Algebra
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In this note we give a proof of the fundamental theorem of algebra, using only the inverse
function theorem and basic point-set topology. The proof is inspired by a proof of Milnor
(]1]), which passes from C to the sphere S?, but proceeds somewhat differently (in particular
does not use regular values, or 5?).

Theorem 1. Let p(z) be any non-constant polynomial of one complex variable with complex
coefficients. Then p(z) has a complex root.

Proof. Let us identify R? with C via z+iy — 2, and identify p(z) as a smooth map R? — R?
via p(z + 1y) = Re(p(x + iy)) + i Im(p(z + 1y)). We will need to relate the differential dp
to the classical (formal) derivative p’, computed using the power rule.! To do this, we also
identify C with a subset of M3(R), the space of 2 x 2 real matrices, via the map

v [ =y
Oz +iy) = (y . ) .
It is easy to check that ® is indeed a ring isomorphism onto its image. We have the following
easy lemma:

Lemma 2. Considered as a map R?> — R?, dp, = ®(p/(2)), where p'(2) is the (formal)
derivative of p.

From the lemma, we deduce immediately that p has finitely many critical points. Indeed,
dp, is singular if and only if ®(p'(z)) is not invertible, which happens if and only if p/(z) = 0,
since ® is a ring isomorphism onto its image. Since p’ is a nonzero polynomial over a field,
it only has finitely many zeroes

To show that p has a root, we prove the stronger claim that p is surjective.
To do so, we need:

Lemma 3. The image p(C) is closed.

IBy formal, we mean for instance that the derivative of az® is akzF~!, extended by sum rule to all
polynomials. We say “formal” since we do not wish to use the derivative of a function of one complex
variable. Of course these coincide, but the formal algebraic definition suffices.



Proof. Suppose z,, € C and p(x,) — y € C. We need to show that y = p(z) for some z. If
the x,, were uniformly bounded, then we may pass to a convergent subsequence z,, — z, and
then p(z,,) — p(x) since p is continuous, and p(x,, ) — y by assumption. Thus y = p(x).

So suppose the sequence x,, were not uniformly bounded. Then we may extract a subse-
quence x,, with |z, | — co. Write

p(2) = an2™ +ay_12V M+ +ag,
with ay # 0. Then
|

|aN—1| _ a0| _
p(2)] > laxl]2[Y (1— an 2] 1—'-'—WIZI ") = lanl]2[V (1 = E(2)).

If k is large enough, then |E(xz,, )| < 1/2, and so |[p(z,,)| > i|an]|z,, [N — oo, a contradic-
tion. Thus the sequence x,, is uniformly bounded. O

Remark 4. This lemma and the proof is a restatement of the following fact: the map p :
C — C C S? (with S? identified as the Riemann sphere, i.e. the one point compactification
of §?%), is a proper, and thus p extends to a map S? — S? mappping oo to oo and C — C.
Thus p(S?) is compact, and hence closed in S%. Thus

p(C) = p(5*\ {o0}) = p(S*) \ {o0} =p(5*) N C

is the intersection of two closed sets, and hence is closed.
Denote A = p(C). We have shown already that A is closed. Let B = C\ p(C). Then B

is open. Let
G ={y € p(C) = A: dp, is singular whenever y = p(z)}.

Since p has finitely many singular points, G is finite. We now use the inverse function
theorem to show that A\ G is open. Indeed, if y € C, then y = p(x) for some x where dp,
is invertible. Thus, by the inverse function theorem, there exist neigbhourhoods U,V C C,
with z € U and y € V such that p : U — V is a homeomorphism. Shrinking U, we may
assume that dp is non-singular over U. In particular V' = p(U) C C and thus C contains a
neighbourhood of .

Since C'= AUB = (A\ G)UGU B is the union of three disjoint sets, C\G = (A\G)UB
is the union of tow disjoint open sets. Since G is finite, C'\ G is connected, and so this is
possible only if A\ G or B is empty. As A is infinite but G is finite, A\ G is not empty, and
thus B = C\ p(C) is empty. Hence p is surjective. O
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